频道栏目
首页 > 程序开发 > Web开发 > Python > 正文
Python编程之jupyter homework
2018-06-13 11:58:56      个评论    来源:zhaobinqi_98的博客  
收藏   我要投稿

Anscombe’s quartet

Anscombe’s quartet comprises of four datasets, and is rather famous. Why? You’ll find out in this exercise.

%matplotlib inline

import random

import numpy as np
import scipy as sp
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import statsmodels.api as sm
import statsmodels.formula.api as smf

sns.set_context("talk")
anascombe = pd.read_csv('data/anscombe.csv') ##pd represents pandas
print(anascombe['x'].head())
anascombe.head()

Part 1


For each of the four datasets…
- Compute the mean and variance of both x and y
- Compute the correlation coefficient between x and y
- Compute the linear regression line: y=β0+β1x+ϵ" role="presentation">y=β0+β1x+? (hint: use statsmodels and look at the Statsmodels notebook)

mean = anascombe.groupby('dataset')['x', 'y'].mean()
print("Mean is as follows: \n", mean)
variance = anascombe.groupby('dataset')['x', 'y'].var()
print("\nvariance is as follows: \n", variance)
correlation_coe = anascombe.groupby('dataset')['x', 'y'].corr()
print('\ncorrelation coefficient is as follows\n', correlation_coe)
print('\n')
# group according to dataset
for gp in anascombe.groupby('dataset'):
 print('Dataset', gp[0], ':')
 result = smf.ols('y ~ x', gp[1]).fit()
 print(result.params, '\n')

Result

Mean is as follows:
xy
dataset
I 9.0 7.500909
II 9.0 7.500909
III9.0 7.500000
IV 9.0 7.500909
variance is as follows:
xy
dataset
I 11.0 4.127269
II 11.0 4.127629
III11.0 4.122620
IV 11.0 4.123249
correlation coefficient is as follows
xy
dataset
I x 1.000000 0.816421
y 0.816421 1.000000
IIx 1.000000 0.816237
y 0.816237 1.000000
III x 1.000000 0.816287
y 0.816287 1.000000
IVx 1.000000 0.816521
y 0.816521 1.000000
Dataset I :
Intercept 3.000091
x0.500091
dtype: float64
Dataset II :
Intercept 3.000909
x0.500000
dtype: float64
Dataset III :
Intercept 3.002455
x0.499727
dtype: float64
Dataset IV :
Intercept 3.001727
x0.499909
dtype: float64

Part 2

Using Seaborn, visualize all four datasets.

hint: use sns.FacetGrid combined with plt.scatter

graph = sns.FacetGrid(anascombe, col="dataset",  hue="y")
graph = graph.map(plt.scatter, "x", "y", edgecolor="R")

图像

点击复制链接 与好友分享!回本站首页
上一篇:Python编写登陆接口
下一篇:Python学习之GUI--登录系统篇
相关文章
图文推荐
点击排行

关于我们 | 联系我们 | 广告服务 | 投资合作 | 版权申明 | 在线帮助 | 网站地图 | 作品发布 | Vip技术培训 | 举报中心

版权所有: 红黑联盟--致力于做实用的IT技术学习网站