频道栏目
首页 > 程序开发 > 软件开发 > 其他 > 正文
Balanced Lineup + 线段树(or RMQ)解析
2018-08-29 14:02:10           
收藏   我要投稿

Balanced Lineup

For the daily milking, Farmer John'sNcows (1 ≤N≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list ofQ(1 ≤Q≤ 200,000) potential groups of cows and their heights (1 ≤height≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

Input

Line 1: Two space-separated integers,NandQ.
Lines 2..N+1: Linei+1 contains a single integer that is the height of cowi
LinesN+2..N+Q+1: Two integersAandB(1 ≤ABN), representing the range of cows fromAtoBinclusive.

Output

Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0

简单的线段树,AC代码:

#include 
#include 
#include 
#include 
using namespace std;
const int maxn = 50000 + 5;
int num[maxn];
int dp_max[maxn][25];
int dp_min[maxn][25];
void ST(int n){
 for(int i =1;i<=n;++i){
  scanf("%d",&num[i]);
  dp_max[i][0] = dp_min[i][0] = num[i];
 }
 for(int j = 1;(1<

这道题还可以用RMQ算法做:RMQ算法https://blog.csdn.net/qq_31759205/article/details/75008659

这道差不多是RMQ算法的模板题了,AC代码:

#include
using namespace std;
const int maxn = 50000 + 5 ;
int a[maxn];
int b[50005][25],c[50005][25];
int N,M;
void RMQ()
{
 for(int i=1; i<=N; i++) b[i][0]=c[i][0]=a[i];
 for(int j=1; (1<
点击复制链接 与好友分享!回本站首页
上一篇:tf.Variable trainable的作用解析
下一篇:图形用户界面之AWT组件与Swing组件解析
相关文章
图文推荐
文章
推荐
点击排行

关于我们 | 联系我们 | 广告服务 | 投资合作 | 版权申明 | 在线帮助 | 网站地图 | 作品发布 | Vip技术培训 | 举报中心

版权所有: 红黑联盟--致力于做实用的IT技术学习网站