频道栏目
首页 > 网络 > 云计算 > 正文

zookeeper学习心得

2016-10-11 09:05:39           
收藏   我要投稿

ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,它包含一个简单的原语集,分布式应用程序可以基于它实现同步服务,配置维护和命名服务等

角色

领导者leader负责进行投票的发起和决议,更新系统状态

跟随者follower用于接收客请求并向客户端返回结果,参与选举投票

观察者observer不参与投票过程,只同步leader状态。为了扩展系统,提高读取速度。

客户端client请求发起方

设计目的

1.最终一致性:client不论连接到哪个Server,展示给它都是同一个视图,这是zookeeper最重要的性能。C一致性A可用性P分区容忍性|三者不可兼得,zookeeper保证的是最终一致性,而非实时一致性。

2 .可靠性:具有简单、健壮、良好的性能,如果消息m被到一台服务器接受,那么它将被所有的服务器接受。

3 .实时性:Zookeeper保证客户端将在一个时间间隔范围内获得服务器的更新信息,或者服务器失效的信息。但由于网络延时等原因,Zookeeper不能保证两个客户端能同时得到刚更新的数据,如果需要最新数据,应该在读数据之前调用sync()接口。

4 .等待无关(wait-free):慢的或者失效的client不得干预快速的client的请求,使得每个client都能有效的等待。

5.原子性:更新只能成功或者失败,没有中间状态。

6 .顺序性:包括全局有序和偏序两种:全局有序是指如果在一台服务器上消息a在消息b前发布,则在所有Server上消息a都将在消息b前被发布;偏序是指如果一个消息b在消息a后被同一个发送者发布,a必将排在b前面

zookeeper工作原理

使用zab协议来实现原子广播的机制。zab协议有两种模式,恢复模式和广播模式,恢复模式用来选举,发生在服务启动或者在领导者崩溃后。广播模式用来同步数据,保证状态的一致性。为了实现事务顺序一致性,使用递增的事务id号zxid标识事务,所有的提议proposal被提出时加上了zxid。zxid是一个64位数字,高32标识不同的leader(leader被重新选举),后32位标识事务,且是递增计数的。

每个Server在工作过程中有三种状态:

·LOOKING:当前Server不知道leader是谁,正在搜寻

·LEADING:当前Server即为选举出来的leader

·FOLLOWING:leader已经选举出来,当前Server与之同步

Paxos

引入一个例子来模拟工作原理。

Paxos描述了这样一个场景,有一个叫做Paxos的小岛(Island)上面住了一批居民,岛上面所有的事情由一些特殊的人决定,他们叫做议员(Senator)。议员的总数(Senator Count)是确定的,不能更改。岛上每次环境事务的变更都需要通过一个提议(Proposal),每个提议都有一个编号(PID),这个编号是一直增长的,不能倒退。每个提议都需要超过半数((Senator Count)/2 +1)的议员同意才能生效。每个议员只会同意大于当前编号的提议,包括已生效的和未生效的。如果议员收到小于等于当前编号的提议,他会拒绝,并告知对方:你的提议已经有人提过了。这里的当前编号是每个议员在自己记事本上面记录的编号,他不断更新这个编号。整个议会不能保证所有议员记事本上的编号总是相同的。现在议会有一个目标:保证所有的议员对于提议都能达成一致的看法。

好,现在议会开始运作,所有议员一开始记事本上面记录的编号都是0。有一个议员发了一个提议:将电费设定为1元/度。他首先看了一下记事本,嗯,当前提议编号是0,那么我的这个提议的编号就是1,于是他给所有议员发消息:1号提议,设定电费1元/度。其他议员收到消息以后查了一下记事本,哦,当前提议编号是0,这个提议可接受,于是他记录下这个提议并回复:我接受你的1号提议,同时他在记事本上记录:当前提议编号为1。发起提议的议员收到了超过半数的回复,立即给所有人发通知:1号提议生效!收到的议员会修改他的记事本,将1好提议由记录改成正式的法令,当有人问他电费为多少时,他会查看法令并告诉对方:1元/度。

现在看冲突的解决:假设总共有三个议员S1-S3,S1和S2同时发起了一个提议:1号提议,设定电费。S1想设为1元/度, S2想设为2元/度。结果S3先收到了S1的提议,于是他做了和前面同样的操作。紧接着他又收到了S2的提议,结果他一查记事本,咦,这个提议的编号小于等于我的当前编号1,于是他拒绝了这个提议:对不起,这个提议先前提过了。于是S2的提议被拒绝,S1正式发布了提议:1号提议生效。S2向S1或者S3打听并更新了1号法令的内容,然后他可以选择继续发起2号提议。

好,我觉得Paxos的精华就这么多内容。现在让我们来对号入座,看看在ZK Server里面Paxos是如何得以贯彻实施的。

小岛(Island)——ZK Server Cluster

议员(Senator)——ZK Server

提议(Proposal)——ZNode Change(Create/Delete/SetData…)

提议编号(PID)——Zxid(ZooKeeper Transaction Id)

正式法令——所有ZNode及其数据

貌似关键的概念都能一一对应上,但是等一下,Paxos岛上的议员应该是人人平等的吧,而ZK Server好像有一个Leader的概念。没错,其实Leader的概念也应该属于Paxos范畴的。如果议员人人平等,在某种情况下会由于提议的冲突而产生一个“活锁”(所谓活锁我的理解是大家都没有死,都在动,但是一直解决不了冲突问题)。Paxos的作者Lamport在他的文章”The Part-Time Parliament“中阐述了这个问题并给出了解决方案——在所有议员中设立一个总统,只有总统有权发出提议,如果议员有自己的提议,必须发给总统并由总统来提出。好,我们又多了一个角色:总统。

总统——ZK Server Leader

总统的选举

在QuorumPeer的startLeaderElection方法里包含leader选举的逻辑。Zookeeper默认提供了4种选举方式,默认是第4种:FastLeaderElection

节点状态: 每个集群中的节点都有一个状态LOOKING, FOLLOWING, LEADING, OBSERVING。都属于这4种,每个节点启动的时候都是LOOKING状态,如果这个节点参与选举但最后不是leader,则状态是FOLLOWING,如果不参与选举则是OBSERVING,leader的状态是LEADING。

开始这个选举算法前,每个节点都会在zoo.cfg上指定的监听端口启动监听(server.1=127.0.0.1:20881:20882),这里的20882就是这里用于选举的端口。

在FastLeaderElection里有一个Manager的内部类,这个类里有启动了两个线程:WorkerReceiver,WorkerSender。这两个线程一个是处理从别的节点接收消息的,一个是向外发送消息的。对于外面的逻辑接收和发送的逻辑都是异步的。

这里配置好了,QuorumPeer的run方法就开始执行了,在LOOKING状态,调用选举算法开始选举了。zookeeper每个节点都选自己,然后向其他节点广播这个选举信息。这里实际上并没有真正的发送出去,只是将选举信息放到由WorkerSender管理的一个队列里。在发送之前会判断要发送节点的id是不是比自己的id大,如果大则不发送了,否则从queueSendMap里取出发送。接收端收到的消息的id比当前的大,则会有RecvWorker接收数据,RecvWorker会将接收到的数据放到recvQueue里。而FastLeaderElection的WorkerReceiver线程里会不断地从这个recvQueue里读取Message处理。在WorkerReceiver会处理一些协议上的事情,比如消息格式等。除此之外还会看看接收到的消息是不是来自投票成员

1. 判断消息里的epoch是不是比当前的大,如果大则消息里id对应的server我就承认它是leader

2. 如果epoch相等则判断zxid,如果消息里的zxid比我的大我就承认它是leader

3. 如果前面两个都相等那就比较一下server id吧,大的我就承认它是leader。

最后一关:如果选的是自己,则将自己的状态更新为LEADING,否则根据type,要么是FOLLOWING,要么是OBSERVING。

到这里选举就结束了。

同步流程

选完leader以后,zk就进入状态同步过程。

1. leader等待server连接;

2. Follower连接leader,将最大的zxid发送给leader;

3. Leader根据follower的zxid确定同步点;

4. 完成同步后通知follower 已经成为uptodate状态;

5. Follower收到uptodate消息后,又可以重新接受client的请求进行服务了。

Leader工作流程

Leader主要有三个功能:

1. 恢复数据;

2. 维持与Learner的心跳,接收Learner请求并判断Learner的请求消息类型;

3. Learner的消息类型主要有PING消息、REQUEST消息、ACK消息、REVALIDATE消息,根据不同的消息类型,进行不同的处理。

PING消息是指Learner的心跳信息;REQUEST消息是Follower发送的提议信息,包括写请求及同步请求;ACK消息是Follower的对提议的回复,超过半数的Follower通过,则commit该提议;REVALIDATE消息是用来延长SESSION有效时间。

Follower工作流程

Follower主要有四个功能:

1. 向Leader发送请求(PING消息、REQUEST消息、ACK消息、REVALIDATE消息);

2. 接收Leader消息并进行处理;

3. 接收Client的请求,如果为写请求,发送给Leader进行投票;

4. 返回Client结果。

Follower的消息循环处理如下几种来自Leader的消息:

1. PING消息: 心跳消息;

2. PROPOSAL消息:Leader发起的提案,要求Follower投票;

3. COMMIT消息:服务器端最新一次提案的信息;

4. UPTODATE消息:表明同步完成;

5. REVALIDATE消息:根据Leader的REVALIDATE结果,关闭待revalidate的session还是允许其接受消息;

6. SYNC消息:返回SYNC结果到客户端,这个消息最初由客户端发起,用来强制得到最新的更新。

 

Zookeeper 监视(Watches)简介

Zookeeper 中最有特色且最不容易理解的是监视(Watches)。Zookeeper 所有的读操作——getData(),getChildren(), 和exists()都 可以设置监视(watch),监视事件可以理解为一次性的触发器


(一次性触发)One-time trigger

当设置监视的数据发生改变时,该监视事件会被发送到客户端,例如,如果客户端调用了getData("/znode1", true) 并且稍后 /znode1 节点上的数据发生了改变或者被删除了,客户端将会获取到 /znode1 发生变化的监视事件,而如果 /znode1 再一次发生了变化,除非客户端再次对 /znode1 设置监视,否则客户端不会收到事件通知。

(发送至客户端)Sent to the client

Zookeeper 客户端和服务端是通过 socket 进行通信的,由于网络存在故障,所以监视事件很有可能不会成功地到达客户端,监视事件是异步发送至监视者的,Zookeeper 本身提供了保序性(ordering guarantee):即客户端只有首先看到了监视事件后,才会感知到它所设置监视的 znode 发生了变化(a client will never see achange for which it has set a watch until it first sees the watch event). 网络延迟或者其他因素可能导致不同的客户端在不同的时刻感知某一监视事件,但是不同的客户端所看到的一切具有一致的顺序。

(被设置 watch 的数据)Thedata for which the watch was set

这意味着 znode 节点本身具有不同的改变方式。你也可以想象 Zookeeper 维护了两条监视链表:数据监视和子节点监视(data watchesand child watches) getData() and exists() 设置数据监视,getChildren()设置子节点监视。 或者,你也可以想象 Zookeeper 设置的不同监视返回不同的数据,getData() 和 exists() 返回 znode 节点的相关信息,而 getChildren() 返回子节点列表。因此, setData() 会触发设置在某一节点上所设置的数据监视(假定数据设置成功),而一次成功的 create() 操作则会出发当前节点上所设置的数据监视以及父节点的子节点监视。一次成功的 delete() 操作将会触发当前节点的数据监视和子节点监视事件,同时也会触发该节点父节点的child watch。

上一篇:kubernetes1.4新特性:增加新的节点健康状况类型DiskPressure
下一篇:Hadoop2.5.2HA高可靠性集群搭建(Hadoop+Zookeeper)
相关文章
图文推荐

关于我们 | 联系我们 | 广告服务 | 投资合作 | 版权申明 | 在线帮助 | 网站地图 | 作品发布 | Vip技术培训 | 举报中心

版权所有: 红黑联盟--致力于做实用的IT技术学习网站