频道栏目
首页 > 资讯 > 疑难 > 正文

TCP协议疑难问题集锦2

13-08-10        来源:[db:作者]  
收藏   我要投稿
TCP协议疑难问题集锦2
 
疑难杂症5:超时计时器的管理-每连接单一计时器
很显然,对每一个TCP分段都生成一个计时器是最直接的方式,每个计时器在RTT时间后到期,如果没有收到确认,则重传。然而这只是理论上的合理,对于大多数操作系统而言,这将带来巨大的内存开销和调度开销,因此采取每一个TCP连接单一计时器的设计则成了一个默认的选择。可是单一的计时器怎么管理如此多的发出去的TCP分段呢?又该如何来设计单一的计时器呢。
     设计单一计时器有两个原则:1.每一个报文在长期收不到确认都必须可以超时;2.这个长期收不到中长期不能和测量的RTT相隔太远。因此RFC2988定义一套很简单的原则:
a.发送TCP分段时,如果还没有重传定时器开启,那么开启它。
b.发送TCP分段时,如果已经有重传定时器开启,不再开启它。
c.收到一个非冗余ACK时,如果有数据在传输中,重新开启重传定时器。
d.收到一个非冗余ACK时,如果没有数据在传输中,则关闭重传定时器。
我们看看这4条规则是如何做到以上两点的,根据a和c(在c中,注意到ACK是非冗余的),任何TCP分段只要不被确认,超时定时器总会超时的。然而为何需要c呢?只有规则a存在的话,也可以做到原则1。实际上确实是这样的,但是为了不会出现过早重传,才添加了规则c,如果没有规则c,那么万一在重传定时器到期前,发送了一些数据,这样在定时器到期后,除了很早发送的数据能收到ACK外,其它稍晚些发送的数据的ACK都将不会到来,因此这些数据都将被重传。有了规则c之后,只要有分段ACK到来,则重置重传定时器,这很合理,因此大多数正常情况下,从数据的发出到ACK的到来这段时间以及计算得到的RTT以及重传定时器超时的时间这三者相差并不大,一个ACK到来后重置定时器可以保护后发的数据不被过早重传。
     这里面还有一些细节需要说明。一个ACK到来了,说明后续的ACK很可能会依次到来,也就是说丢失的可能性并不大,另外,即使真的有后发的TCP分段丢失现象发生,也会在最多2倍定时器超时时间的范围内被重传(假设该报文是第一个报文发出启动定时器之后马上发出的,丢失了,第一个报文的ACK到来后又重启了定时器,又经过了一个超时时间才会被重传)。虽然这里还没有涉及拥塞控制,但是可见网络拥塞会引起丢包,丢包会引起重传,过度重传反过来加重网络拥塞,设置规则c的结果可以缓解过多的重传,毕竟将启动定时器之后发送的数据的重传超时时间拉长了最多一倍左右。最多一倍左右的超时偏差做到了原则2,即“这个长期收不到中长期不能和测量的RTT相隔太远”。
     还有一点,如果是一个发送序列的最后一个分段丢失了,后面就不会收到冗余ACK,这样就只能等到超时了,并且超时时间几乎是肯定会比定时器超时时间更长。如果这个分段是在发送序列的靠后的时间发送的且和前面的发送时间相隔时间较远,则其超时时间不会很大,反之就会比较大。
疑难杂症6:何时测量RTT
目前很多TCP实现了时间戳,这样就方便多了,发送端再也不需要保存发送分段的时间了,只需要将其放入协议头的时间戳字段,然后接收端将其回显在ACK即可,然后发送端收到ACK后,取出时间戳,和当前时间做算术差,即可完成一次RTT的测量。
3.2.3.数据顺序性
基本上传输可靠性是靠序列号实现的。
疑难杂症7:确认号和超时重传
确认号是一个很诡异的东西,因为TCP的发送端对于发送出去的一个数据序列,它只要收到一个确认号就认为确认号前面的数据都被收到了,即使前面的某个确认号丢失了,也就是说,发送端只认最后一个确认号。这是合理的,因为确认号是接收端发出的,接收端只确认按序到达的最后一个TCP分段。
     另外,发送端重发了一个TCP报文并且接收到该TCP分段的确认号,并不能说明这个重发的报文被接收了,也可能是数据早就被接收了,只是由于其ACK丢失或者其ACK延迟到达导致了超时。值得说明的是,接收端会丢弃任何重复的数据,即使丢弃了重复的数据,其ACK还是会照发不误的。
     标准的早期TCP实现为,只要一个TCP分段丢失,即使后面的TCP分段都被完整收到,发送端还是会重传从丢失分段开始的所有报文,这就会导致一个问题,那就是重传风暴,一个分段丢失,引起大量的重传。这种风暴实则不必要的,因为大多数的TCP实现中,接收端已经缓存了乱序的分段,这些被重传的丢失分段之后的分段到达接收端之后,很大的可能性是被丢弃。关于这一点在拥塞控制被引入之后还会提及(问题先述为快:本来报文丢失导致超时就说明网络很可能已然拥塞,重传风暴只能加重其拥塞程度)。
疑难杂症8:乱序数据缓存以及选择确认
TCP是保证数据顺序的,但是并不意味着它总是会丢弃乱序的TCP分段,具体会不会丢弃是和具体实现相关的,RFC建议如果内存允许,还是要缓存这些乱序到来的分段,然后实现一种机制等到可以拼接成一个按序序列的时候将缓存的分段拼接,这就类似于IP协议中的分片一样,但是由于IP数据报是不确认的,因此IP协议的实现必须缓存收到的任何分片而不能将其丢弃,因为丢弃了一个IP分片,它就再也不会到来了。     
     现在,TCP实现了一种称为选择确认的方式,接收端会显式告诉发送端需要重传哪些分段而不需要重传哪些分段。这无疑避免了重传风暴。
疑难杂症9:TCP序列号的回绕的问题
TCP的序列号回绕会引起很多的问题,比如序列号为s的分段发出之后,m秒后,序列号比s小的序列号为j的分段发出,只不过此时的j比上一个s多了一圈,这就是回绕问题,那么如果这后一个分段到达接收端,这就会引发彻底乱序-本来j该在s后面,结果反而到达前面了,这种乱序是TCP协议检查不出来的。我们仔细想一下,这种情况确实会发生,数据分段并不是一个字节一个字节发送出去的,如果存在一个速率为1Gbps的网络,TCP发送端1秒会发送125MB的数据,32位的序列号空间能传输2的32次方个字节,也就是说32秒左右就会发生回绕,我们知道这个值远小于MSL值,因此会发生的。
     有个细节可能会引起误会,那就是TCP的窗口大小空间是序列号空间的一半,这样恰好在满载情况下,数据能填满发送窗口和接收窗口,序列号空间正好够用。然而事实上,TCP的初始序列号并不是从0开始的,而是随机产生的(当然要辅助一些更精妙的算法),因此如果初始序列号比较接近2的32次方,那么很快就会回绕。
     当然,如今可以用时间戳选项来辅助作为序列号的一个识别的部分,接收端遇到回绕的情况,需要比较时间戳,我们知道,时间戳是单调递增的,虽然也会回绕,然而回绕时间却要长很多。这只是一种策略,在此不详谈。还有一个很现实的问题,理论上序列号会回绕,但是实际上,有多少TCP的端点主机直接架设在1G的网络线缆两端并且接收方和发送方的窗口还能恰好被同时填满。另外,就算发生了回绕,也不是一件特别的事情,回绕在计算机里面太常见了,只需要能识别出来即可解决,对于TCP的序列号而言,在高速网络(点对点网络或者以太网)的两端,数据发生乱序的可能性很小,因此当收到一个序列号突然变为0或者终止序列号小于起始序列号的情况后,很容易辨别出来,只需要和前一个确认的分段比较即可,如果在一个经过路由器的网络两端,会引发IP数据报的顺序重排,对于TCP而言,虽然还会发生回绕,也会慢得多,且考虑到拥塞窗口(目前还没有引入)一般不会太大,窗口也很难被填满到65536。
3.2.4.端到端的流量控制
端到端的流量控制使用滑动窗口来实现。滑动窗口的原理非常简单,基本就是一个生产者/消费者模型
 
相关TAG标签
上一篇:TCP协议疑难问题集锦3
下一篇:TCP协议疑难问题集锦1
相关文章
图文推荐

关于我们 | 联系我们 | 广告服务 | 投资合作 | 版权申明 | 在线帮助 | 网站地图 | 作品发布 | Vip技术培训 | 举报中心

版权所有: 红黑联盟--致力于做实用的IT技术学习网站