频道栏目
首页 > 资讯 > CCNA > 正文

CCNA配置试验之十静态NAT和动态NAT的配置

11-09-08        来源:[db:作者]  
收藏   我要投稿

NAT概述:
NAT即网络地址翻译
为什么要使用NAT:
•          随着Internet的飞速发展,网上丰富的资源产生着巨大的吸引力
•          接入Internet成为当今信息业最为迫切的需求
 
•          但这受到IP地址的许多限制
•          首先,许多局域网在未联入Internet之前,就已经运行许多年了,局域网上有了许多现成的资源和应用程序,但它的IP地址分配不符合 Internet的国际标准,因而需要重新分配局域网的IP地址,这无疑是 劳神费时的工作
•          其二,随着Internet的膨胀式发展,其可用的IP地址越来越少,要想在ISP处申请一个新的IP地址已不是很容易的事了
NAT是如何解决问题的:
•          它解决问题的办法是:在内部网络中使用内部地址,通过NAT把内部地址翻译成合法的IP地址,在Internet上使用
•          其具体的做法是把IP包内的地址池(内部本地)用合法的IP地址段(内部全局)来替换
NAT三种类型
•          NAT有三种类型:静态NAT(staticNAT)、NAT池(pooledNAT)和端口NAT(PAT)。
 
•          其中静态NAT设置起来最为简单,内部网络中的每个主机都被永久映射成 外部网络中的某个合法的地址,多用于服务器。
 
•          而NAT池则是在外部网络中定义了一系列的合法地址,采用动态分配的方法映射到内部网络,多用于网络中的工作站。
 
•          PAT则是把内部地址映射到外部网络的一个IP地址的不同端口上。
 
今天我们来配置静态NAT和动态NAT
首先从比较简单的静态NAT开始吧!
试验拓扑图如下:

拓扑介绍:
R1 和 R2 分别是企业的边界路由器。
R1的外网接口S0/0的IP为192.168.2.1,内网接口F1/0的IP为192.168.1.2。R1的内网计算机pc1的ip地址为192.168.1.1。
R2的外网接口S0/0的IP为192.168.2.2,内网接口F1/0的IP为192.168.3.1。R2的内网计算机pc2的ip地址为192.168.3.2。
试验目的:
通过配置静态NAT,把R1内pc1的内网ip地址192.168.1.1转换为公网ip 192.168.2.6。
把R2内pc2的内网ip地址192.168.3.2转换为公网ip 192.168.2.9。
最终实现192.168.1.1 能ping通192.168.2.9   ping192.168.3.2 则失败
192.168.3.2能ping通192.168.2.6   ping192.168.1.1 则失败。
上述现象的原因是从外网到内网建立静态映射后,外网能PING通内部全局地址,如果使用真实地址,则访问失败,这是因为从外网没有到达内网的路由存在!
 
试验开始:
R1
 
Router>en
Router#conf t
Enter configuration commands, one per line.  End with CNTL/Z.
Router(config)#host r1
r1(config)#int f1/0
r1(config-if)#ip addr 192.168.1.2 255.255.255.0
r1(config-if)#no shut
r1(config-if)#ip nat inside                             指定内部接口
r1(config-if)#int s0/0
r1(config-if)#ip addr 192.168.2.1 255.255.255.0
r1(config-if)#ip nat outside                            指定外部接口
r1(config-if)#exit
r1(config)#ip nat inside source static 192.168.1.1 192.168.2.6建立两个ip地址之间的静态映射
r1(config)#exit
 
 
 
Router>en
Router#conf t
Enter configuration commands, one per line.  End with CNTL/Z.
Router(config)#host r2
r2(config)#int f1/0
r2(config-if)#ip addr 192.168.3.1 255.255.255.0
r2(config-if)#no shut
r2(config-if)#ip nat inside                             指定内部接口
r2(config-if)#int s0/0
r2(config-if)#ip addr 192.168.2.2 255.255.255.0
r2(config-if)#no shut
r2(config-if)#ip nat outside                            指定外部接口
r2(config-if)#exit
r2(config)#ip nat inside source static 192.168.3.2 192.168.2.9建立两个ip地址之间的静态映射
r2(config)#exit
 
配置完成,现在开始验证:
VPCS 1 >ping 192.168.2.9
192.168.2.9 icmp_seq=1 time=345.000 ms
192.168.2.9 icmp_seq=2 time=390.000 ms
192.168.2.9 icmp_seq=3 time=208.000 ms
192.168.2.9 icmp_seq=4 time=190.000 ms
192.168.2.9 icmp_seq=5 time=234.000 ms
 
VPCS 1 >ping 192.168.3.2
192.168.3.2 icmp_seq=1 timeout
192.168.3.2 icmp_seq=2 timeout
192.168.3.2 icmp_seq=3 timeout
192.168.3.2 icmp_seq=4 timeout
192.168.3.2 icmp_seq=5 timeout
 
VPCS 2 >ping 192.168.2.6
192.168.2.6 icmp_seq=1 time=613.000 ms
192.168.2.6 icmp_seq=2 time=256.000 ms
192.168.2.6 icmp_seq=3 time=412.000 ms
192.168.2.6 icmp_seq=4 time=216.000 ms
192.168.2.6 icmp_seq=5 time=155.000 ms
 
VPCS 2 >ping 192.168.1.1
192.168.1.1 icmp_seq=1 timeout
192.168.1.1 icmp_seq=2 timeout
192.168.1.1 icmp_seq=3 timeout
192.168.1.1 icmp_seq=4 timeout
192.168.1.1 icmp_seq=5 timeout
 
192.168.1.1 能ping通192.168.2.9   ping192.168.3.2 则失败
192.168.3.2能ping通192.168.2.6   ping192.168.1.1 则失败。
验证结果和试验要求一致,试验成功!
 
 
接下来我们来配置动态NAT
试验拓扑图如下

拓扑介绍:
R1 和 R2 分别是企业的边界路由器。
R1的外网接口S0/0的IP为192.168.2.1,内网接口F1/0的IP为192.168.1.2。R1的内网计算机pc1的ip地址为192.168.1.6。pc2的ip地址为192.168.1.7。pc3的ip地址为192.168.1.8。
R2的外网接口S0/0的IP为192.168.2.2,内网接口F1/0的IP为192.168.3.1。R2的内网计算机pc4的ip地址为192.168.3.6。pc5的ip地址为192.168.3.7。pc6的ip地址为192.168.3.8。
两个交换机都不做任何配置。
试验目的:
通过完成动态NAT的配置,
把R1内的内网ip地址转换为公网ip。公网ip地址池为(192.168.2.11------192.168.2.14)
把R2内的内网ip地址转换为公网ip。公网ip地址池为(192.168.2.15------192.168.2.18)
 
试验开始:
R1
 
Router>en
Router#conf t
Router(config)#host r1mmands, one per line.  End with CNTL/Z.
r1(config)#int f1/0
r1(config-if)#ip addr 192.168.1.2 255.255.255.0
r1(config-if)#ip nat inside       指定内部接口
r1(config-if)#no shut
r1(config-if)#exit
r1(config)#int s0/0
r1(config-if)#ip addr 192.168.2.1 255.255.255.0
r1(config-if)#ip nat outside     指定外部接口
r1(config-if)#no shut
r1(config-if)#exit
r1(config)#ip nat pool name1 192.168.2.11 192.168.2.14 netmask 255.255.255.0定义全局地址池
r1(config)#access-list 1 permit 192.168.1.0 0.0.0.255通过标准访问控制列表定义内部网络的上网条件
r1(config)#ip nat inside source list 1 pool name1建立全局地址池和标准访问控制列表之间的映射关系
r1(config)#exit
 
 
R2
Router>en
Router#conf t
Enter configuration commands, one per line.  End with CNTL/Z.
Router(config)#host r2
r2(config)#int f1/0
r2(config-if)#ip addr 192.168.3.1 255.255.255.0
r2(config-if)#ip nat inside      定义内部接口
r2(config-if)#no shut
r2(config-if)#exit
r2(config)#int s0/0
r2(config-if)#ip addr 192.168.2.2 255.255.255.0
r2(config-if)#ip nat outside     定义外部接口
r2(config-if)#no shut
r2(config-if)#exit
r2(config)#ip nat pool name2 192.168.2.15 192.168.2.18 netmask 255.255.255.0定义全局地址池
r2(config)#access-list 2 permit 192.168.3.0 0.0.0.255通过标准访问控制列表定义内部网络的上网条件
r2(config)#ip nat inside source list 2 pool name2建立全局地址池和标准访问控制列表之间的映射关系
r2(config)#exit
 
 
配置完成,开始验证。在R1 R2上show ip nat translations查看NAT地址转换表
R1
r1#show ip nat translations
Pro Inside global      Inside local       Outside local      Outside global
--- 192.168.2.11       192.168.1.6        ---                ---
--- 192.168.2.12       192.168.1.7        ---                ---
--- 192.168.2.13       192.168.1.8        ---                ---
 
 
R2
r2#show ip nat translations
Pro Inside global      Inside local       Outside local      Outside global
--- 192.168.2.15       192.168.3.6        ---                ---
--- 192.168.2.16       192.168.3.7        ---                ---
--- 192.168.2.17       192.168.3.8        ---                ---
查看结果表明R1 R2的内部ip地址都转换成了外网地址。
 
以pc1为例,
在pc1上ping R2内的内网地址都不能通讯。
根据NAT地址转换表,pc 1  ping R2内网地址相应的外网ip则能通讯。
 
VPCS 1 >ping 192.168.3.6
192.168.3.6 icmp_seq=1 timeout
192.168.3.6 icmp_seq=2 timeout
192.168.3.6 icmp_seq=3 timeout
192.168.3.6 icmp_seq=4 timeout
192.168.3.6 icmp_seq=5 timeout
 
VPCS 1 >ping 192.168.3.7
192.168.3.7 icmp_seq=1 timeout
192.168.3.7 icmp_seq=2 timeout
192.168.3.7 icmp_seq=3 timeout
192.168.3.7 icmp_seq=4 timeout
192.168.3.7 icmp_seq=5 timeout
 
VPCS 1 >ping 192.168.3.8
192.168.3.8 icmp_seq=1 timeout
192.168.3.8 icmp_seq=2 timeout
192.168.3.8 icmp_seq=3 timeout
192.168.3.8 icmp_seq=4 timeout
192.168.3.8 icmp_seq=5 timeout
 
VPCS 1 >ping 192.168.2.15
192.168.2.15 icmp_seq=1 time=578.000 ms
192.168.2.15 icmp_seq=2 time=578.000 ms
192.168.2.15 icmp_seq=3 time=484.000 ms
192.168.2.15 icmp_seq=4 time=485.000 ms
192.168.2.15 icmp_seq=5 time=625.000 ms
 
VPCS 1 >ping 192.168.2.16
192.168.2.16 icmp_seq=1 time=813.000 ms
192.168.2.16 icmp_seq=2 time=500.000 ms
192.168.2.16 icmp_seq=3 time=422.000 ms
192.168.2.16 icmp_seq=4 time=687.000 ms
192.168.2.16 icmp_seq=5 time=484.000 ms
 
VPCS 1 >ping 192.168.2.17
192.168.2.17 icmp_seq=1 time=515.000 ms
192.168.2.17 icmp_seq=2 time=454.000 ms
192.168.2.17 icmp_seq=3 time=407.000 ms
192.168.2.17 icmp_seq=4 time=562.000 ms
192.168.2.17 icmp_seq=5 time=438.000 ms
 
试验结果和预想的一样!试验成功……

作者“土豆空间”

相关TAG标签
上一篇: MPLS标签分发详解
下一篇:CCNA配置试验之九帧中继——点到多点(point-to-multipoint)子接
相关文章
图文推荐

关于我们 | 联系我们 | 广告服务 | 投资合作 | 版权申明 | 在线帮助 | 网站地图 | 作品发布 | Vip技术培训 | 举报中心

版权所有: 红黑联盟--致力于做实用的IT技术学习网站